
www.manaraa.com

A Web-Based Distributed ProgrammingEnvironment?Kiyoko F. Aoki and D. T. LeeInstitute of Information Science, Academia Sinica,Nankang, Taipei, Taiwanfkiyoko, dtleeg@iis.sinica.edu.twhttp://iis.sinica.edu.tw/Abstract. A Java-based system called the GeoJAVA System was intro-duced in [1]. This system allows a user to remotely compile his/her ownC/C++ programs and execute them for visualization among a group ofremote users. DISPE, which stands for DIStributed Programming En-vironment, expands on the GeoJAVA System by allowing the resultingexecutables to be run on systems other than the host on which they werecompiled, thus making the system more versatile. DISPE uses CommonObject Request Broker (CORBA) services to enable executables com-piled on this system to invoke methods in libraries on remote sites inan architecturally heterogeneous environment. Not only does this allowusers to compile and execute their programs remotely, but the mainte-nance and duplication of libraries is lowered since agents are used tosearch for symbols in libraries located remotely and to compile themwith the user's source code. As long as there is an Internet connectionbetween the hosts on which these libraries reside, the agents can searchand compile with these libraries.1 IntroductionThe GeoJAVA System introduced in [1] is a system developed for researchers ofcomputational geometry to enable them to develop geometric algorithms withoutthe hassle of the administrative aspects of programming, such as downloading,setting up and maintaining libraries and compiling programs. Briey, this systemconsists of web-based interfaces where users upload their C/C++ programs thatvisualize geometric algorithms to the web server, compile them remotely, andexecute their program, thus broadcasting the results to remote users via theprovided visualization tool. The programs only need to provide minimal codefor the actual visualization, and the management of remote users is provided bythe system.DISPE expands on this system to provide a more generalized programmingenvironment that any researcher can use. Whereas theGeoJAVA System required? This work supported in part by the National Science Foundation under the GrantCCR-9731638, and by the National Science Council under the Grant NSC-89-2213-E-001-012.



www.manaraa.com

that the user upload their �les to a remote host and compile with the librariesthere, DISPE allows the user to take advantage of mobile agents to compile thecode with distributed remote libraries. So these agents can be dispatched froma local computer to compile the local source code with remote libraries. Workrelated to DISPE will be introduced next, followed by a brief description of thesystem's design. The conclusion and future work are given in the last section.2 Related WorkDISPE is a system that encompasses several areas. It is an extension of theGeoJAVA System, which incorporates a visualization tool with a collaboratory,allowing remote users to interact and solve geometric problems. It is also acompilation system for distributed libraries, di�erent from existing compilersfor high performance computing or parallel computers. It takes advantage ofmobile agents to search for libraries during compilation, and it uses CORBA fordynamic, distributed execution. In this section, we discuss some work related tothe main components of DISPE, namely agents and CORBA. To our knowledge,no known system provides all of the functionality that DISPE does.2.1 AgentsThe terminology of agents should be discerned between agents of arti�cial in-telligence (AI), which are more like robots, and agents as described later in thisarticle. Projects whose foci are more in the former area include work done by theSoftware Agents group at MIT Media Lab[22] and Softbots at the University ofWashington[2].Quite a few agent products are being developed, as is evident on the AgentSociety home page[11]. Many of these are agent systems that provide a frameworkfor agent projects. We list a few major ones.Aglets [3] are the agents provided by IBM's Aglets Software DevelopmentKit (ASDK), which is an environment for programming mobile Internet agentsin Java. Aglets are Java objects that can move from one host on the Internetto another. When an aglet moves, it takes along its program code as well as itsdata. DISPE uses Aglets in its implementation.Voyager [24] is a 100% Java agent-enhanced Object Request Broker (ORB)that combines mobile autonomous agents and remote method invocation withcomplete CORBA support and comes complete with distributed services suchas directory, persistence, and publish-subscribe.MOA [5] was designed to support migration, communication and control ofagents. It was implemented on top of the Java Virtual Machine, and compliantwith the Java Beans component model, which provides for additional con�g-urability and customization of agent system and agent applications, as well asinteroperability which allows cooperation with other agent systems.



www.manaraa.com

2.2 CORBAThe Object Management Group (OMG) developed the CORBA standard inresponse to the need for interoperability among the rapidly proliferating numberof hardware and software products available. CORBA allows applications tocommunicate with one another no matter where they are located or who hasdesigned them.Since the inception of CORBA, a number of di�erent vendors have imple-mented their own versions of CORBA, each a little di�erent from the other,especially where the CORBA speci�cation was not very detailed. In implement-ing DISPE, requirements in deciding upon a CORBA implementation includedadherence to version 2.2 of the CORBA speci�cation, ease of use of the API,and availability. Based on these requirements, TAO and MICO seemed the mostapplicable.TAO[23], is a real-time ORB end system designed to meet end-to-end appli-cation quality of service (QoS) requirements by vertically integrating CORBAmiddleware with operating system I/O subsystems, communication protocols,and network interfaces. MICO [20] has a clean API that supports the CORBA2.2 speci�cation, and it is freely available.There are several other popular vendors who provide CORBA implemen-tations. A full list of CORBA implementations can be found at [21]. Thereare several projects underway using CORBA, as can be seen in [14]. The onesthat seem to be the most closely related to DISPE are the DOMIS Project atMITRE[15] and GOODE at the University of Lille[16], the latter of which hasdeveloped CorbaWeb[13] and CorbaScript[12].3 Design and ImplementationThe DISPE system is composed of the original GeoJAVA System plus the Com-pilation Agents and the CORBAizer. The CORBAizer is an application thatcan be used by any user, and the Compilation Agents consist of the Java agentswhich reside in Agent Contexts on each remote host. These Agent Contexts pro-vide a layer of security between the agents and the host so that (1) agents do notgain unlimited access to the host's resources, and (2) the host cannot directlymanipulate the agents and its data. Figure 1 illustrates the general architecturefor the system. The work involved in implementing these components of DISPEis given next, followed by a brief example explaining the general ow of thecompilation process using agents.3.1 The AgentsThe Compilation Agents are Java objects that use native compilers. The mainCompiler agent communicates with several types of agents in order to obtaininformation and data from remote sites and to complete the compilation process.These other agents are the Include agent, the Client Agent and the Library Proxy



www.manaraa.com

= Agent Loads Directory

= Agent Message

Library Directory

Host Directory

Include Directory

Host Directory

Library Directory

Include Directory

Lib. Proxy

Legend

= Compilation Agent

= Directory

= Agent Context

= Web Server

= Path of Agent

Client

Includes

Client

Aglet Context

Main
Server
(A Context)

Compiler

C

Web Server

(symbol definitions)

Host Directory

Symbol Directory

Library Directory

Include Directory

Aglet Context

B

A

DISPE 

Lib. Proxy Fig. 1. Agents ArchitectureAgent. While the main Compiler agent is stationary and remains at the originalsite at which the compilation begins, the Include Agent searches for missinginclude header �les, the Client agent travels and searches for missing symbolsduring the linking phase, and the Library Proxy Agent serves as a stationaryagent at each server host that responds to Include Agent requests for header�le locations and to Client agent requests for library locations. Library ProxyAgents are created and disposed of by the agents who need them.There is also a Vulture object for the Compiler agent which performs somechecks for fault tolerance. For example, if an agent somehow \dies" unexpectedly,the Compiler agent would not know of it, so the Vulture object is used as aseparate thread which occasionally sends a \ping" message to the dispatchedagents, and if it does not receive a reply within a certain time frame, it sends areplacement agent to the same site, or, if the site has gone down, to any existingbackup site.In order to search for hosts, include header �les, libraries and symbols, theCompiler agent maintains a hash table of this information which is read fromdisk upon startup and written to disk before being disposed of. This hash ta-ble serves as the Directory. The advantage of this approach is that the webserver's agent host system keeps a central database �le of this information ina simple hash table, and no new protocols or additional management softwareneed to be introduced into the system. Java proved to be very convenient in thisrespect because of its serialization capabilities. So when the Compiler agent is�rst started, it reads four hash tables representing the Host, Include, Library andSymbol Directories containing host, header �le, library, and symbol information,respectively, collected from previous compilations.3.2 Performing the compilationThe compilation process performed by the agents are discussed next in a step-by-step manner.



www.manaraa.com

Invoking the native compiler The �rst step is to invoke the compiler. Theoriginal gcc compiler goes through preprocessing, compilation, assembly, andlinking[9], each invoked by separate executables. The linking phase was modi�edfor the agents to use. In a normal compilation, the linker is automatically calledby the compiler with various ags and options, so in order to keep consistent withthe ags used during a \normal\ compilation, we �rst determine the ags neededto be passed to the linker by running a sample compilation with the verbose (-v)ag. The same ags were then used when the agent called the linker.The linker's main() method was modi�ed into a method that was compiledinto a shared library, which the Compiler agent loads when it is instantiated. Toinvoke the compiler, then, the Compiler agent �rst makes a system call to invokethe C++ compiler with the -c ag, indicating that it should compile up to thelinking stage, but not link. Then the linker is called via the modi�ed method inthe shared library.Finding Header �les Before we can reach the linking stage, the compilershould �rst handle missing header �les. A parser is used to parse the messagesdisplayed during this earlier compilation phase for any messages indicating thatan include �le could not be found.For missing include header �les, the Compiler agent will consult its own copyof the Directory to see if any of the include �les have been found before. If so,an Include Agent is dispatched to the host where the include �les are located,taking along a list of the missing �lenames. If these include �les are not locatedin the Directory, the Include Agent is sent to the Main Server, which is a centralhost where libraries and other host information is stored. The Include Agent willthen begin travelling and searching for the include �le names that it has beengiven.When an Include Agent arrives at a host, it searches for a Library ProxyAgent, and if it cannot �nd one, it creates it. The Library Proxy Agent readsthe Directory of include �les located at the host and sends the Include Agent aformatted list of include �les. When the Library Proxy Agent �rst starts up, italso informs the parent of the Include Agent, whose proxy it receives from thecreating agent, of the list of hosts that it \knows" about from its own Directory.The Compiler agent will then add any new hosts from this list. In this way,new host information can be dispersed in a \natural" manner by the agentsthemselves.Any include �les found are sent back to the Compiler agent and incorporatedinto the compilation. This agent keeps track of the \repeat count" which indi-cates how long it should wait before it should determine that the compilationcannot continue.Linking Once this compilation phase completes successfully, the Compilationagent will begin the linking phase by making a call to the modi�ed gcc linker viaJNI. The linker will �rst attempt to link the source code with whatever librariesare available on the local host.



www.manaraa.com

The linker uses a hash table to store all of the symbols in a compilation,and within the hash table is a linked list of unde�ned symbols. During thecompilation, this linked list is used to merge in data from libraries to \pull in"symbol de�nitions into the compilation. We took advantage of this linked list touse with the agents.To illustrate a compilation procedure using Figure 1, �rst, the Compiler agentis instantiated upon a call for a compilation. Given the source code information,the Compiler agent dispatches an Include agent when it detects any missingheader �les in the compilation stage (before the linking stage). So the Includeagent (A) is sent to a host (based on information in the Directory on the DISPEserver), where it �nds the Lib Proxy agent. The Lib Proxy agent tells the Includeagent which header �les are located there based on the Directory information atthe host. If there is a match for the �le that the Include agent is searching for,the Include agent sends the header �le back to the Compiler agent. If there aremissing header �les remaining, the Include agent will dispatch itself to the nexthost. The result of the compilation determines whether or not to continue on tothe linking stage. The linking stage will begin with a link in order to determinewhich symbols are missing. If there are symbols missing, then a Client agent (B)is dispatched to the hosts where the header �les were found. These Client agentswill communicate with the Lib Proxy agents in a manner similar to that of theInclude agent. However, once a symbol is found in a remote library, instead ofsending each symbol back to the Compiler agent, the Client agent will begin itsown \mini-compilation" in order to draw in as many needed symbols as possible.This process will result in an archive of object �les containing the needed symbolsfor the compilation, which is sent back (C) to the Compiler agent. When thenecessary symbols are found, the Compiler agent re-compiles the source codewith the archive(s) found, and if more missing symbols remain, a message issent to the Client agent(s) to �nd the new missing symbols (thus incrementingthe \repeat count"). The Client agents are told to dispose of themselves oncethe compilation completes successfully (i.e., no missing symbols remain), or the\repeat limit" is reached (which can be set according to the user's wishes).3.3 The GUIA web interface used as a GUI to the Compiler agent is described next. We usea daemon which creates a socket and listens for messages to create Compileragents. An applet connects to the socket and simply displays any messages thatit receives while listening on the socket. The daemon takes the applet's socket IDand passes it to the newly created Compiler aglet. Thus, the Compiler aglet cansend messages to display on the applet to indicate the status of the compilation.Figure 2 is an instance of this web interface. Note, however, that a user canalso use these agents from their local machine as long as they have downloadedthe necessary components.



www.manaraa.com

Fig. 2. Agent Compiler GUI3.4 Registration ToolThe Registration Tool is a Java application that the user runs when he/shewishes to make a library available to the agents. Once a library is registered intothe system via this Registration Tool, agents can �nd the new library when theyarrive at the host through the Context providing the registered information. Inthe case that a new host is being created, the host can be added to the systemduring a compilation, where, in the beginning, the Compiler Agent will ask ifany new hosts are to be added, and the user can input the information at thattime.3.5 The CORBAizerAlthough the compilation agents can compile with static libraries, compiling withshared, or dynamic link, libraries is a di�erent story. Because shared librariesare only useful (at the time of this writing) in a system where they are loadableinto the address space of the running executable [8], they cannot be used in adistributed system. In addition, we still have architecture issues where librarieson di�erent architectures cannot be compiled together, even if they have symbolde�nitions to o�er. Fortunately, these issues dissolve with the CORBAizer.The CORBAizer is based on the Exerciser Generator introduced in the Run-Class tool[10]. This tool dynamically instantiates objects through the user's com-mands via the GUI and allows the methods within these objects to be examined.In order for a library to be inspected, the header �les of the library had to beparsed and converted into a format that the system's engine could understand.The CORBAizer is based on this parser that is used in the RunClass tool.



www.manaraa.com

The CORBAizer parses the header �les of a library and generates two sets ofC++ code: server code and client code. These source code �les can be compiledseparately, even on separate architectures, and used to communicate with eachother via CORBA. The CORBA implementation that we used was MICO. Oncethe CORBAizer generates the server and client source �les from the header�les, the server code is compiled with the original library corresponding to theinput header �les, and the client code is used to generate a new library that isregistered with DISPE, as was described previously. The server code can eitherbe added to the CORBA Implementation Repository, which is a daemon thatwill automatically call the server when a request for a method in its library iscalled, or the server can be run manually to wait for requests from clients. Then,once the client library is added to the system, any program using the classes andmethods de�ned in the original, possibly shared, library will be compiled withthe client library just generated, and when the program is executed, the user'sprogram will use CORBA to make a connection with the server program whichexecutes the appropriate methods remotely. The user need not be concernedwith any details of the CORBA implementation since it is all handled by theclient library.The basic idea behind the CORBAizer is that from a library's header �les, a\skeleton" for the library's contents can be retrieved, which is used to generatethe server and client code. The client is a copy of the skeleton with the implemen-tations of the objects replaced by CORBA calls for searching for and connectingwith the server and invoking the \real" methods. The server code takes advan-tage of CORBA's tie feature [6], which allows legacy classes to be wrapped by aCORBA class that takes the legacy class as the object of a template. The legacyclass is then called when the CORBA class in the server receives a request for amethod invocation.4 Conclusion and Future WorkDISPE has great potential in paving the way for a new style of programming.Much of the latest and most solid technology in computer programming has beenincorporated into the system, such as Java and CORBA. This should prove tobe a plus for DISPE as it has been built on technology with a solid foundation.The use of Java-based agents is indeed an innovative concept, and one thatcan grow and be useful for years to come. There are no signs of the C/C++language weakening in the future, despite the growing use of Java. Thus, theintegration of two of the most popular languages today in a distributed sys-tem should be very bene�cial for C/C++ programmers. Remote compilation,whether using the \Traditional" or \Agent Compilation" frees users from wor-rying about the setup of libraries and include �les and their directories, allowingthem more time to focus on programming. The remote execution is all loca-tion transparent, where groups of users at remote sites can easily demonstrategeometric algorithms to one another, and the CORBAizer is especially usefulin allowing remote libraries to be accessed during a program's execution. The



www.manaraa.com

CORBAizer should be very practical for users of existing legacy libraries writtenin C/C++. It is not easy to manually develop CORBA libraries from scratch,let alone to port a legacy library to CORBA. Thus, the CORBAizer will de�-nitely be useful for all programmers in any �eld where there is a need to integratelegacy systems with CORBA. Finally, remote debugging capabilities, a necessityfor most programmers, complete the DISPE package. No known system providessuch a complete programming framework.In determining how we were to implement the search for hosts and libraries(\searching" for symbols is performed once an agent reaches a remote host andaccess a library), at �rst, the lightweight directory access protocol (LDAP)[19,18] seemed very attractive. The attractiveness was compounded by the fact thatSun Microsystems also announced the availability of the Java Naming and Di-rectory Interface (JNDI)[17] which supports LDAP. Therefore, as more hostsand libraries are added to the system, the use of LDAP may become useful inimplementing the Directories used in the system. This would address versioningand consistency issues related to the header �les and libraries introduced intothe system.As in any distributed system, the issue of security needs to be addressed, es-pecially in the compilation and execution of programs that use foreign libraries.Both the code being compiled and the libraries registered in the system needto be checked for any potentially dangerous code such as system calls. In ap-proaching this issue, agents may use a little more intelligence in compiling theuser's code, perhaps by detecting any potentially dangerous methods and check-ing with the user if the detected code should be compiled into the program. Asimilar procedure may be followed during the registration and/or CORBAizationof libraries.The CORBAizer that has been implemented generates server and client codethat is compatible with MICO's CORBA implementation. So future work canbe put into generating code for other CORBA implementations as well.The Registration Tool currently reads three sets of �les to determine thelibraries and include �les available to the compilation agents. However, in thecase when large lets of libraries and include �les are residing on a system, itmay be more e�cient to use a database. Therefore, the Registration Tool maybe replaced by a database in the future.References1. K.F. Aoki, D. T. Lee, Towards Web-Based Computing, accepted to Int'l Journalof Computational Geometry and Applications, Special Edition, 1999.2. O. Etzioni, D. Weld, A Softbot-Based Interface to the Internet, Communicationsof the ACM, July, 1994.3. D.B. Lange, M. Oshima, Programming and Deploying Java Mobile Agents withAglets, Addison Wesley Longman, Inc., 1998.4. D.T. Lee, C.F. Shen, S.M. Sheu, \GeoSheet: A Distributed Visualization Toolfor Geometric Algorithms", Int'l J. Computational Geometry & Applications, 8,2,April 1998, pp. 119-155.



www.manaraa.com

5. D. Milojicic, W. LaForge, D. Chauhan, Mobile Objects and Agents (MOA), DesignImplementation and Lessons Learned, The 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS), Santa Fe, New Mexico, April, 1998.6. Object Management Group. The Common Object Request Broker: Architecture andSpeci�cation, Revision 2.2, OMG Technical Document 98-07-01.7. Object Management Group. 1998. Mobile Agent System Interoperability Facility- OMG Revision Task Force Document. Framingham, MA: Object ManagementGroup.ftp://ftp.omg.org/pub/docs/orbos/98-03-09.pdf.8. Solaris Linker and Libraries Guide, Sun Microsystems, Inc., 1997.http://docs.sun.com:80/ab2/coll.45.4/LLM/@Ab2TocView?9. R.M. Stallman, Using and Porting GNU CC, Version 2.8.1. Free Software Foun-dation, 59 Temple Place - Suite 330, Boston, MA, 02111-1307, 1998.10. T.R. Chuang, Y.S. Kuo, C.M. Wang, Non-Intrusive Object Introspection in C++{ Architecture and Application, Proceedings of the 20th International Conferenceon Software Engineering, pp. 312-321, Kyoto, Japan, April 1998.11. The Agent Society. http://www.agent.org/.12. CorbaScript. http://corbaweb.li.fr/CorbaScript/index.html.13. CorbaWeb. http://corbaweb.li.fr/index.html.14. Cetus Links - CORBA.http://www.cetus-links.org/oo corba.html#oo corba projects.15. DOMIS. http://www.mitre.org/research/domis/index.html.16. GOODE. http://corbaweb.li.fr/GOODE/index.html.17. Java Naming and Directory Interface (JNDI).http://java.sun.com/products/jndi/.18. An LDAP Roadmap & FAQ.http://www.kingsmountain.com/ldapRoadmap.shtml.19. Lightweight Directory Access Protocol (LDAP) FAQ.http://www.critical-angle.com/ldapworld/ldapfaq.html.20. MICO. http://www.mico.org/.21. Cetus Links - CORBA - ORBs.http://www.cetus-links.org/oo object request brokers.html.22. Software Agents Group. http://agents.www.media.mit.edu/groups/agents/.23. TAO. http://www.cs.wustl.edu/~schmidt/TAO.html.24. Voyager. http://www.objectspace.com/voyager.


