A Web-Based Distributed Programming
Environment*

Kiyoko F. Aoki and D. T. Lee

Institute of Information Science, Academia Sinica,
Nankang, Taipei, Taiwan
{kiyoko, dtlee}@iis.sinica.edu.tw
http://iis.sinica.edu.tw/

Abstract. A Java-based system called the GeoJAVA System was intro-
duced in [1]. This system allows a user to remotely compile his/her own
C/C++ programs and execute them for visualization among a group of
remote users. DISPE, which stands for DIStributed Programming En-
vironment, expands on the GeoJAVA Systern by allowing the resulting
executables to be run on systems other than the host on which they were
compiled, thus making the system more versatile. DISPE uses Common
Object Request Broker (CORBA) services to enable executables com-
piled on this system to invoke methods in libraries on remote sites in
an architecturally heterogeneous environment. Not only does this allow
users to compile and execute their programs remotely, but the mainte-
nance and duplication of libraries is lowered since agents are used to
search for symbols in libraries located remotely and to compile them
with the user’s source code. As long as there is an Internet connection
between the hosts on which these libraries reside, the agents can search
and compile with these libraries.

1 Introduction

The GeoJAVA System introduced in [1] is a system developed for researchers of
computational geometry to enable them to develop geometric algorithms without
the hassle of the administrative aspects of programming, such as downloading,
setting up and maintaining libraries and compiling programs. Briefly, this system
consists of web-based interfaces where users upload their C/C++ programs that
visualize geometric algorithms to the web server, compile them remotely, and
execute their program, thus broadcasting the results to remote users via the
provided visualization tool. The programs only need to provide minimal code
for the actual visualization, and the management of remote users is provided by
the system.

DISPE expands on this system to provide a more generalized programming
environment that any researcher can use. Whereas the GeoJAVA System required

* This work supported in part by the National Science Foundation under the Grant
CCR-9731638, and by the National Science Council under the Grant NSC-89-2213-
E-001-012.

www.manaraa.com

that the user upload their files to a remote host and compile with the libraries
there, DISPF allows the user to take advantage of mobile agents to compile the
code with distributed remote libraries. So these agents can be dispatched from
a local computer to compile the local source code with remote libraries. Work
related to DISPFE will be introduced next, followed by a brief description of the
system’s design. The conclusion and future work are given in the last section.

2 Related Work

DISPE is a system that encompasses several areas. It is an extension of the
GeoJAVA System, which incorporates a visualization tool with a collaboratory,
allowing remote users to interact and solve geometric problems. It is also a
compilation system for distributed libraries, different from existing compilers
for high performance computing or parallel computers. It takes advantage of
mobile agents to search for libraries during compilation, and it uses CORBA for
dynamic, distributed execution. In this section, we discuss some work related to
the main components of DISPE, namely agents and CORBA. To our knowledge,
no known system provides all of the functionality that DISPE does.

2.1 Agents

The terminology of agents should be discerned between agents of artificial in-
telligence (AI), which are more like robots, and agents as described later in this
article. Projects whose foci are more in the former area include work done by the
Software Agents group at MIT Media Lab[22] and Softbots at the University of
Washington|[2].

Quite a few agent products are being developed, as is evident on the Agent
Society home page[11]. Many of these are agent systems that provide a framework
for agent projects. We list a few major ones.

Aglets [3] are the agents provided by IBM’s Aglets Software Development
Kit (ASDK), which is an environment for programming mobile Internet agents
in Java. Aglets are Java objects that can move from one host on the Internet
to another. When an aglet moves, it takes along its program code as well as its
data. DISPE uses Aglets in its implementation.

Voyager [24] is a 100% Java agent-enhanced Object Request Broker (ORB)
that combines mobile autonomous agents and remote method invocation with
complete CORBA support and comes complete with distributed services such
as directory, persistence, and publish-subscribe.

MOA [5] was designed to support migration, communication and control of
agents. It was implemented on top of the Java Virtual Machine, and compliant
with the Java Beans component model, which provides for additional config-
urability and customization of agent system and agent applications, as well as
interoperability which allows cooperation with other agent systems.

www.manaraa.com

2.2 CORBA

The Object Management Group (OMG) developed the CORBA standard in
response to the need for interoperability among the rapidly proliferating number
of hardware and software products available. CORBA allows applications to
communicate with one another no matter where they are located or who has
designed them.

Since the inception of CORBA, a number of different vendors have imple-
mented their own versions of CORBA; each a little different from the other,
especially where the CORBA specification was not very detailed. In implement-
ing DISPE, requirements in deciding upon a CORBA implementation included
adherence to version 2.2 of the CORBA specification, ease of use of the API,
and availability. Based on these requirements, TAO and MICO seemed the most
applicable.

TAO|[23], is a real-time ORB end system designed to meet end-to-end appli-
cation quality of service (QoS) requirements by vertically integrating CORBA
middleware with operating system I/O subsystems, communication protocols,
and network interfaces. MICO [20] has a clean API that supports the CORBA
2.2 specification, and it is freely available.

There are several other popular vendors who provide CORBA implemen-
tations. A full list of CORBA implementations can be found at [21]. There
are several projects underway using CORBA, as can be seen in [14]. The ones
that seem to be the most closely related to DISPE are the DOMIS Project at
MITRE[15] and GOODE at the University of Lille[16], the latter of which has
developed CorbaWeb[13] and CorbaScript[12].

3 Design and Implementation

The DISPE system is composed of the original GeoJAVA System plus the Com-
pilation Agents and the CORBAizer. The CORBAizer is an application that
can be used by any user, and the Compilation Agents consist of the Java agents
which reside in Agent Contexts on each remote host. These Agent Contexts pro-
vide a layer of security between the agents and the host so that (1) agents do not
gain unlimited access to the host’s resources, and (2) the host cannot directly
manipulate the agents and its data. Figure 1 illustrates the general architecture
for the system. The work involved in implementing these components of DISPE
is given next, followed by a brief example explaining the general flow of the
compilation process using agents.

3.1 The Agents

The Compilation Agents are Java objects that use native compilers. The main
Compiler agent communicates with several types of agents in order to obtain
information and data from remote sites and to complete the compilation process.
These other agents are the Include agent, the Client Agent and the Library Proxy

www.manaraa.com

DISPE Web Server Aglet Context Tjoe ;e;l(;r;/ - ’:

Includes }wwgem 0 T ----Ton

”””””” \ > .- A Include Directory |

! Host Directory - " | T Ny s e

ffffffffff ‘
.

Main
Server -
(A Context)

Legend

= Compilation Agent

D = Agent Context
I:l =Web Server

==uuop =Pathof Agent

— =Agent Message

'L ' <~ - -= =Agent Loads Directory

Fig. 1. Agents Architecture

Agent. While the main Compiler agent is stationary and remains at the original
site at which the compilation begins, the Include Agent searches for missing
include header files, the Client agent travels and searches for missing symbols
during the linking phase, and the Library Proxy Agent serves as a stationary
agent at each server host that responds to Include Agent requests for header
file locations and to Client agent requests for library locations. Library Proxy
Agents are created and disposed of by the agents who need them.

There is also a Vulture object for the Compiler agent which performs some
checks for fault tolerance. For example, if an agent somehow “dies” unexpectedly,
the Compiler agent would not know of it, so the Vulture object is used as a
separate thread which occasionally sends a “ping” message to the dispatched
agents, and if it does not receive a reply within a certain time frame, it sends a
replacement agent to the same site, or, if the site has gone down, to any existing
backup site.

In order to search for hosts, include header files, libraries and symbols, the
Compiler agent maintains a hash table of this information which is read from
disk upon startup and written to disk before being disposed of. This hash ta-
ble serves as the Directory. The advantage of this approach is that the web
server’s agent host system keeps a central database file of this information in
a simple hash table, and no new protocols or additional management software
need to be introduced into the system. Java proved to be very convenient in this
respect because of its serialization capabilities. So when the Compiler agent is
first started, it reads four hash tables representing the Host, Include, Library and
Symbol Directories containing host, header file, library, and symbol information,
respectively, collected from previous compilations.

3.2 Performing the compilation

The compilation process performed by the agents are discussed next in a step-
by-step manner.

www.manaraa.com

Invoking the native compiler The first step is to invoke the compiler. The
original gce compiler goes through preprocessing, compilation, assembly, and
linking[9], each invoked by separate executables. The linking phase was modified
for the agents to use. In a normal compilation, the linker is automatically called
by the compiler with various flags and options, so in order to keep consistent with
the flags used during a “normal“ compilation, we first determine the flags needed
to be passed to the linker by running a sample compilation with the verbose (-v)
flag. The same flags were then used when the agent called the linker.

The linker’s main() method was modified into a method that was compiled
into a shared library, which the Compiler agent loads when it is instantiated. To
invoke the compiler, then, the Compiler agent first makes a system call to invoke
the C++ compiler with the -c flag, indicating that it should compile up to the
linking stage, but not link. Then the linker is called via the modified method in
the shared library.

Finding Header files Before we can reach the linking stage, the compiler
should first handle missing header files. A parser is used to parse the messages
displayed during this earlier compilation phase for any messages indicating that
an include file could not be found.

For missing include header files, the Compiler agent will consult its own copy
of the Directory to see if any of the include files have been found before. If so,
an Include Agent is dispatched to the host where the include files are located,
taking along a list of the missing filenames. If these include files are not located
in the Directory, the Include Agent is sent to the Main Server, which is a central
host where libraries and other host information is stored. The Include Agent will
then begin travelling and searching for the include file names that it has been
given.

When an Include Agent arrives at a host, it searches for a Library Proxy
Agent, and if it cannot find one, it creates it. The Library Proxy Agent reads
the Directory of include files located at the host and sends the Include Agent a
formatted list of include files. When the Library Proxy Agent first starts up, it
also informs the parent of the Include Agent, whose proxy it receives from the
creating agent, of the list of hosts that it “knows” about from its own Directory.
The Compiler agent will then add any new hosts from this list. In this way,
new host information can be dispersed in a “natural” manner by the agents
themselves.

Any include files found are sent back to the Compiler agent and incorporated
into the compilation. This agent keeps track of the “repeat count” which indi-
cates how long it should wait before it should determine that the compilation
cannot continue.

Linking Once this compilation phase completes successfully, the Compilation
agent will begin the linking phase by making a call to the modified gcc linker via
JNI. The linker will first attempt to link the source code with whatever libraries
are available on the local host.

www.manaraa.com

The linker uses a hash table to store all of the symbols in a compilation,
and within the hash table is a linked list of undefined symbols. During the
compilation, this linked list is used to merge in data from libraries to “pull in”
symbol definitions into the compilation. We took advantage of this linked list to
use with the agents.

To illustrate a compilation procedure using Figure 1, first, the Compiler agent
is instantiated upon a call for a compilation. Given the source code information,
the Compiler agent dispatches an Include agent when it detects any missing
header files in the compilation stage (before the linking stage). So the Include
agent (A) is sent to a host (based on information in the Directory on the DISPE
server), where it finds the Lib Proxy agent. The Lib Proxy agent tells the Include
agent which header files are located there based on the Directory information at
the host. If there is a match for the file that the Include agent is searching for,
the Include agent sends the header file back to the Compiler agent. If there are
missing header files remaining, the Include agent will dispatch itself to the next
host. The result of the compilation determines whether or not to continue on to
the linking stage. The linking stage will begin with a link in order to determine
which symbols are missing. If there are symbols missing, then a Client agent (B)
is dispatched to the hosts where the header files were found. These Client agents
will communicate with the Lib Proxy agents in a manner similar to that of the
Include agent. However, once a symbol is found in a remote library, instead of
sending each symbol back to the Compiler agent, the Client agent will begin its
own “mini-compilation” in order to draw in as many needed symbols as possible.
This process will result in an archive of object files containing the needed symbols
for the compilation, which is sent back (C) to the Compiler agent. When the
necessary symbols are found, the Compiler agent re-compiles the source code
with the archive(s) found, and if more missing symbols remain, a message is
sent to the Client agent(s) to find the new missing symbols (thus incrementing
the “repeat count”). The Client agents are told to dispose of themselves once
the compilation completes successfully (i.e., no missing symbols remain), or the
“repeat limit” is reached (which can be set according to the user’s wishes).

3.3 The GUI

A web interface used as a GUI to the Compiler agent is described next. We use
a daemon which creates a socket and listens for messages to create Compiler
agents. An applet connects to the socket and simply displays any messages that
it receives while listening on the socket. The daemon takes the applet’s socket ID
and passes it to the newly created Compiler aglet. Thus, the Compiler aglet can
send messages to display on the applet to indicate the status of the compilation.

Figure 2 is an instance of this web interface. Note, however, that a user can
also use these agents from their local machine as long as they have downloaded
the necessary components.

www.manaraa.com

3% Compilation Page - lletscape
File Edit “iew Go Communicator Help

Back fFonvard Relosd Horne Search Metscape Print Security u
T ¥ Hockmarks & Loestion: |y is sinica adutw/cgibin/compile.cgi =] EJ7 What's Related
¥ Instant Message Members Wehhiail Smanlpdate RealPlayer eTourcom Walcome to Mer

Com pilation

(Please wait. while your program compiles.)

T you see the message ' Compilation completed successfully. then you may click here to starta
Geol AVA session to try running your program,or you may click here to start a debuggng
session

YWelcome to Compiler Aglet

Socket connection establisted H
Hello From Compilerdglet!

Starting compile.

Foundinclude fils-sample.h

Dispatched agletto atpiigeometryiis.sinica.edu bw.4404
Agent has found data..

Agent has found data..

Agent has found data...

Agent has found data

Agent has found data..

Agent has found data..

Receiving data fram Agent.

Done raceiving data from Agent.

Compilation completed successiully

Fig. 2. Agent Compiler GUI

3.4 Registration Tool

The Registration Tool is a Java application that the user runs when he/she
wishes to make a library available to the agents. Once a library is registered into
the system via this Registration Tool, agents can find the new library when they
arrive at the host through the Context providing the registered information. In
the case that a new host is being created, the host can be added to the system
during a compilation, where, in the beginning, the Compiler Agent will ask if
any new hosts are to be added, and the user can input the information at that
time.

3.5 The CORBAizer

Although the compilation agents can compile with static libraries, compiling with
shared, or dynamic link, libraries is a different story. Because shared libraries
are only useful (at the time of this writing) in a system where they are loadable
into the address space of the running executable [8], they cannot be used in a
distributed system. In addition, we still have architecture issues where libraries
on different architectures cannot be compiled together, even if they have symbol
definitions to offer. Fortunately, these issues dissolve with the CORBAizer.

The CORBAizer is based on the Exerciser Generator introduced in the Run-
Class tool[10]. This tool dynamically instantiates objects through the user’s com-
mands via the GUI and allows the methods within these objects to be examined.
In order for a library to be inspected, the header files of the library had to be
parsed and converted into a format that the system’s engine could understand.
The CORBAizer is based on this parser that is used in the RunClass tool.

www.manaraa.com

The CORBAizer parses the header files of a library and generates two sets of
C++ code: server code and client code. These source code files can be compiled
separately, even on separate architectures, and used to communicate with each
other via CORBA. The CORBA implementation that we used was MICQO. Once
the CORBAizer generates the server and client source files from the header
files, the server code is compiled with the original library corresponding to the
input header files, and the client code is used to generate a new library that is
registered with DISPE, as was described previously. The server code can either
be added to the CORBA Implementation Repository, which is a daemon that
will automatically call the server when a request for a method in its library is
called, or the server can be run manually to wait for requests from clients. Then,
once the client library is added to the system, any program using the classes and
methods defined in the original, possibly shared, library will be compiled with
the client library just generated, and when the program is executed, the user’s
program will use CORBA to make a connection with the server program which
executes the appropriate methods remotely. The user need not be concerned
with any details of the CORBA implementation since it is all handled by the
client library.

The basic idea behind the CORBAizer is that from a library’s header files, a
“skeleton” for the library’s contents can be retrieved, which is used to generate
the server and client code. The client is a copy of the skeleton with the implemen-
tations of the objects replaced by CORBA calls for searching for and connecting
with the server and invoking the “real” methods. The server code takes advan-
tage of CORBA'’s tie feature [6], which allows legacy classes to be wrapped by a
CORBA class that takes the legacy class as the object of a template. The legacy
class is then called when the CORBA class in the server receives a request for a
method invocation.

4 Conclusion and Future Work

DISPFE has great potential in paving the way for a new style of programming.
Much of the latest and most solid technology in computer programming has been
incorporated into the system, such as Java and CORBA. This should prove to
be a plus for DISPE as it has been built on technology with a solid foundation.

The use of Java-based agents is indeed an innovative concept, and one that
can grow and be useful for years to come. There are no signs of the C/C++
language weakening in the future, despite the growing use of Java. Thus, the
integration of two of the most popular languages today in a distributed sys-
tem should be very beneficial for C/C++ programmers. Remote compilation,
whether using the “Traditional” or “Agent Compilation” frees users from wor-
rying about the setup of libraries and include files and their directories, allowing
them more time to focus on programming. The remote execution is all loca-
tion transparent, where groups of users at remote sites can easily demonstrate
geometric algorithms to one another, and the CORBAizer is especially useful
in allowing remote libraries to be accessed during a program’s execution. The

www.manaraa.com

CORBAizer should be very practical for users of existing legacy libraries written
in C/C++. It is not easy to manually develop CORBA libraries from scratch,
let alone to port a legacy library to CORBA. Thus, the CORBAizer will defi-
nitely be useful for all programmers in any field where there is a need to integrate
legacy systems with CORBA. Finally, remote debugging capabilities, a necessity
for most programmers, complete the DISPE package. No known system provides
such a complete programming framework.

In determining how we were to implement the search for hosts and libraries
(“searching” for symbols is performed once an agent reaches a remote host and
access a library), at first, the lightweight directory access protocol (LDAP)[19,
18] seemed very attractive. The attractiveness was compounded by the fact that
Sun Microsystems also announced the availability of the Java Naming and Di-
rectory Interface (JNDI)[17] which supports LDAP. Therefore, as more hosts
and libraries are added to the system, the use of LDAP may become useful in
implementing the Directories used in the system. This would address versioning
and consistency issues related to the header files and libraries introduced into
the system.

As in any distributed system, the issue of security needs to be addressed, es-
pecially in the compilation and execution of programs that use foreign libraries.
Both the code being compiled and the libraries registered in the system need
to be checked for any potentially dangerous code such as system calls. In ap-
proaching this issue, agents may use a little more intelligence in compiling the
user’s code, perhaps by detecting any potentially dangerous methods and check-
ing with the user if the detected code should be compiled into the program. A
similar procedure may be followed during the registration and/or CORBAization
of libraries.

The CORBAizer that has been implemented generates server and client code
that is compatible with MICO’s CORBA implementation. So future work can
be put into generating code for other CORBA implementations as well.

The Registration Tool currently reads three sets of files to determine the
libraries and include files available to the compilation agents. However, in the
case when large lets of libraries and include files are residing on a system, it
may be more efficient to use a database. Therefore, the Registration Tool may
be replaced by a database in the future.

References

1. K.F. Aoki, D. T. Lee, Towards Web-Based Computing, accepted to Int’l Journal
of Computational Geometry and Applications, Special Edition, 1999.

2. O. Etzioni, D. Weld, A Softbot-Based Interface to the Internet, Communications
of the ACM, July, 1994.

3. D.B. Lange, M. Oshima, Programming and Deploying Java Mobile Agents with
Aglets, Addison Wesley Longman, Inc., 1998.

4. D.T. Lee, C.F. Shen, S.M. Sheu, “GeoSheet: A Distributed Visualization Tool
for Geometric Algorithms”, Int’l J. Computational Geometry € Applications, 8,2,
April 1998, pp. 119-155.

www.manaraa.com

5. D. Milojicic, W. LaForge, D. Chauhan, Mobile Objects and Agents (MOA), Design
Implementation and Lessons Learned, The 4th USENIX Conference on Object-
Oriented Technologies and Systems (COOTS), Santa Fe, New Mexico, April, 1998.

6. Object Management Group. The Common Object Request Broker: Architecture and
Specification, Revision 2.2, OMG Technical Document 98-07-01.

7. Object Management Group. 1998. Mobile Agent System Interoperability Facility
- OMG Revision Task Force Document. Framingham, MA: Object Management
Group.
ftp://ftp.omg.org/pub/docs/orbos/98-03-09.pdf.

8. Solaris Linker and Libraries Guide, Sun Microsystems, Inc., 1997.
http://docs.sun.com:80/ab2/coll.45.4/LLM /@Ab2TocView?

9. R.M. Stallman, Using and Porting GNU CC, Version 2.8.1. Free Software Foun-
dation, 59 Temple Place - Suite 330, Boston, MA, 02111-1307, 1998.

10. T.R. Chuang, Y.S. Kuo, C.M. Wang, Non-Intrusive Object Introspection in C++
— Architecture and Application, Proceedings of the 20th International Conference
on Software Engineering, pp. 312-321, Kyoto, Japan, April 1998.

11. The Agent Society. http://www.agent.org/.

12. CorbaScript. http://corbaweb lifl.fr/CorbaScript /index.html.

13. CorbaWeb. http://corbaweb.lifl.fr/index.html.

14. Cetus Links - CORBA.
http://www.cetus-links.org/oo_corba.html#o00_corba_projects.

15. DOMIS. http://www.mitre.org/research/domis/index.html.

16. GOODE. http://corbaweb.lifl.fr/GOODE/index.html.

17. Java Naming and Directory Interface (JNDI).
http://java.sun.com/products/jndi/.

18. An LDAP Roadmap & FAQ.
http://www.kingsmountain.com/ldapRoadmap.shtml.

19. Lightweight Directory Access Protocol (LDAP) FAQ.
http://www.critical-angle.com/ldapworld/ldapfaq.html.

20. MICO. http://www.mico.org/.

21. Cetus Links - CORBA - ORBs.
http://www.cetus-links.org/oo_object_request_brokers.html.

22. Software Agents Group. http://agents.www.media.mit.edu/groups/agents/.

23. TAO. http://www.cs.wustl.edu/ schmidt/TAO.html.

24. Voyager. http://www.objectspace.com/voyager.

www.manharaa.com

